Maintenance of solar panels

Solar panel conversion efficiency, typically in the 20% range, is reduced by the accumulation of dust, grime, pollen, and other particulates on the solar panels, collectively referred to as soiling.

Solar panel conversion efficiency, typically in the 20% range, is reduced by the accumulation of dust, grime, pollen, and other particulates on the solar panels, collectively referred to as soiling. "A dirty solar panel can reduce its power capabilities by up to 30% in high dust/pollen or desert areas", says Seamus Curran, associate professor of physics at the University of Houston and director of the Institute for NanoEnergy, which specializes in the design, engineering, and assembly of nanostructures. The average soiling loss in the world in 2018 is estimated to be at least 3% – 4%.

 

Paying to have solar panels cleaned is a good investment in many regions, as of 2019. However, in some regions, cleaning is not cost-effective. In California as of 2013 soiling-induced financial losses were rarely enough to warrant the cost of washing the panels. On average, panels in California lost a little less than 0.05% of their overall efficiency per day.

 

There are also occupational hazards with solar panel installation and maintenance. Birds nests and other debris that can get lodged under the solar panels, which can cause disruptions in the system, lead to fire if there are any loose connections, or just cause the system to degrade over time.

 

A 2015–2018 study in the UK investigated 80 PV-related incidents of fire, with over 20 "serious fires" directly caused by PV installation, including 37 domestic buildings and 6 solar farms. In 1⁄3 of the incidents a root cause was not established and in a majority of others was caused by poor installation, faulty product or design issues. The most frequent single element causing fires was the DC isolators.

 

A 2021 study by kWh Analytics determined median annual degradation of PV systems at 1.09% for residential and 0.8% for non-residential ones, almost twice that previously assumed. A PVEL module reliability study found an increasing trend in solar module failure rates with 30% of manufacturers experiencing safety failures related to junction boxes (growth from 20%) and 26% bill-of-materials failures (growth from 20%).

 

Cleaning methods for solar panels can be divided into 5 groups: manual tools, mechanized tools (such as tractor mounted brushes), installed hydraulic systems (such as sprinklers), installed robotic systems, and deployable robots. Manual cleaning tools are by far the most prevalent method of cleaning, most likely because of the low purchase cost. However, in a Saudi Arabian study done in 2014, it was found that "installed robotic systems, mechanized systems, and installed hydraulic systems are likely the three most promising technologies for use in cleaning solar panels".